A Probabilistic Approach to Hierarchical Model-based Diagnosis

نویسنده

  • Sampath Srinivas
چکیده

Model-based diagnosis reasons backwards from a functional schematic of a system to isolate faults given observations of anoma­ lous behavior. We develop a fully proba­ bilistic approach to model based diagno­ sis and extend it to support hierarchical models. Our scheme translates the func­ tional schematic into a Bayesian network and diagnostic inference takes place in the Bayesian network. A Bayesian network diagnostic inference algorithm is modified to take advantage of the hierarchy to give computational gains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reliable Hierarchical Location-allocation Model under Heterogeneous Probabilistic Disruptions

This paper presents a novel reliable hierarchical location-allocation model where facilities are subject to the risk of disruptions. Based on the relationship between various levels of system, a multi-level multi-flow hierarchy is considered. The heterogeneous probabilistic disruptions are investigated in which the constructed facilities have different site-dependent and independent failure rat...

متن کامل

Implicational Scaling of Reading Comprehension Construct: Is it Deterministic or Probabilistic?

In English as a Second Language Teaching and Testing situations, it is common to infer about learners’ reading ability based on his or her total score on a reading test. This assumes the unidimensional and reproducible nature of reading items. However, few researches have been conducted to probe the issue through psychometric analyses. In the present study, the IELTS exemplar module C (1994) wa...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994